What is the furthest graph from a hereditary property?

نویسندگان

  • Noga Alon
  • Uri Stav
چکیده

For a graph property P, the edit distance of a graph G from P, denoted EP(G), is the minimum number of edge modifications (additions or deletions) one needs to apply to G in order to turn it into a graph satisfying P. What is the furthest graph on n vertices from P and what is the largest possible edit distance from P? Denote this maximal distance by ed(n,P). This question is motivated by algorithmic edge-modification problems, in which one wishes to find or approximate the value of EP(G) given an input graph G. A monotone graph property is closed under removal of edges and vertices. Trivially, for any monotone property, the largest edit distance is attained by a complete graph. We show that this is a simple instance of a much broader phenomenon. A hereditary graph property is closed under removal of vertices. We prove that for any hereditary graph property P, a random graph with an edge density that depends on P essentially achieves the maximal distance from P, that is: ed(n,P) = EP(G(n, p(P))) + o(n) with high probability. The proofs combine several tools, including strengthened versions of the Szemerédi Regularity Lemma, properties of random graphs and probabilistic arguments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maximum edit distance from hereditary graph properties

For a graph property P, the edit distance of a graph G from P, denoted EP(G), is the minimum number of edge modifications (additions or deletions) one needs to apply to G in order to turn it into a graph satisfying P. What is the largest possible edit distance of a graph on n vertices from P? Denote this distance by ed(n,P). A graph property is hereditary if it is closed under removal of vertic...

متن کامل

Quantitative Structure-Property Relationship to Predict Quantum Properties of Monocarboxylic Acids By using Topological Indices

Abstract. Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. A graph is a ...

متن کامل

Hardness of edge-modification problems

For a graph property P consider the following computational problem. Given an input graph G, what is the minimum number of edge modifications (additions and/or deletions) that one has to apply to G in order to turn it into a graph that satisfies P? Namely, what is the edit distance ∆(G,P) of a graph G from satisfying P. Clearly, the computational complexity of such a problem strongly depends on...

متن کامل

Line graphs associated to the maximal graph

Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...

متن کامل

The Node-Deletion Problem for Hereditary Properties is NP-Complete

We consider the family of graph problems called node-deletion problems, defined as follows: For a fixed graph property l7, what is the minimum number of nodes which must be deleted from a given graph so that the resulting subgraph satisfies l7? We show that if l7 is nontrivial and hereditary on induced subgraphs, then the node-deletion problem for n is NP-complete for both undirected and direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2008